
A Motion-based Controller for Real-time Computer Music
with applications for Dance Choreography and Music Composition

The Design, Construction and Programming of a
Wireless accelerometer-based interface system

May 2018

Christopher R. Morgan, Ph.D., cmorgan@collin.edu

Collin College

Objective

To create a low-cost wireless accelerometer-based interface system for Collin College composers,

musicians and dancers, that is easy to build, set-up and use with a computer-based software synthesis

environment. The system would facilitate collaboration between multiple performing arts departments by

providing a technological “bridge” between disciplines.

This paper describes the design, construction and programming of this system. The current version

utilizes a three-axis accelerometer connected to a wi-fi capable microcontroller board transmitting wireless Open

Sound Control (OSC) messages to a computer running the software synthesis environment Max-MSP. This

environment is capable of creating sound in realtime as well as controlling lights, video and electro-mechanical

devices. The performer can wear multiple interfaces attached to the hands, feet and torso and the XYZ-axis

accelerometer data from each interface can be mapped to synthesis and digital signal processing effects. This

paper will also describe a representative synthesis technique used for the initial prototype since the parameter

mapping proved especially effective in terms of variety of timbres, response sensitivity as well as expressiveness.

Since this controller system generates all of the sounds and effects in real-time, it establishes a unique

environment for dance choreography wherein the dancer essentially performs on a hybrid musical instrument in

what would traditionally be the role of the composer. As a result, the system is equally effective for

choreographed as well as improvised performances.

Context and History

There are three approaches to interactive dance music which have co-existed for over two decades:

• Touch sensitive floors

• Video-based motion tracking systems

• Wearable technologies (both wired and wireless)

	 2	

Each approach has advantages and disadvantages. For instance, touch-sensitive floors are technologically

very simple since they are switches or variable resistance, however they can only respond to being stepped on and

therefore don’t respond to the dancer’s arm, head and torso movements. Video tracking systems can excel at

tracking the full body and even recently some hand and finger movements (Kinect v2) but this tracking requires

the dancer to stay within a pre-defined area of the camera’s field of view. Wearable technologies do not have this

limitation because the sensors are attached to different parts of the dancer’s body and travel with the performer.

In recent years, the popularity of so-called “maker” (aka DIY) electronics have increased the availability of

inexpensive sensors including accelerometers. However, there were several technological obstacles that slowed

down widespread development and use. Among the initial obstacles was the fact the wireless protocols available

to the microcontrollers were not easily compatible with real-time synthesis languages. For example, there are

several wireless communication protocols available for use with microcontrollers and sensors, and getting the

microcontrollers to communicate sensor information to each other is relatively easily achieved. However, routing

the data into a real-time synthesis environment was difficult and required low-level programming which is

typically beyond the reach of performing artists who are typically not programmers.

 With the introduction of Open Sound Control (OSC) in 2001, a communication protocol standard

began to emerge for wired and later wireless systems. In 2015 OSC software libraries were released for both

wired and wireless Arduino-based boards. However, as will be shown, there are technical difficulties that

continue to make using OSC challenging for some users.

 The second major obstacle for the use of wearable sensors was the sheer size of the wireless transceivers

themselves which were often bulky even before factoring in battery packs and antennae, making their use for

dancers problematic.

Initial Prototype

The recent availability of smart phones with accelerometers lead to the development of the author’s

initial prototype of a wearable interface for dancers and

computer musicians to control sound synthesis parameters.

This initial prototype utilized two smart phones each attached

to the back of the dancer’s hands so that their movement and

choreography created and shaped realtime computer music by

transmitting the accelerometer data over wi-fi using the

program TouchOSC (hexlar.net). This initial version was

premiered in May, 2016 in a work entitled “Fractures”. In

March 2017 the interface was also used to control DMX-based
Figure 1: Initial Prototype with smartphone

	 3	

lighting in addition to the sound synthesis and spatialization.

 As a “proof of concept” prototype, the smart phones worn on the backs of the wrists worked very well

but there are two shortcomings with this approach. First, the smart phones are bulky and while they can be worn

on the backs of the hands, they are two big to attach to feet. Secondly, it is cost prohibitive to use anything other

than “retired” smart phones since a smart phone/device typically costs several hundred dollars each. In addition,

this cost is unnecessary when all that is needed is the accelerometer data. Lastly, setting up TouchOSC to

communicate to a computer over a wireless network can be difficult and often it was necessary to create an “ad

hoc” network to accomplish this. This increases the technical difficulty of using this form of wearable technology

and prevents its widespread use among dancers or even many computer music composers.

System Overview

 The interface system is made up of multiple interfaces worn by a musician or dancer on the

hands, feet and torso all communicating wirelessly through an access point to a computer running a

synthesis environment. The user wears from one to five interfaces but two interfaces worn on the backs

of the hands is most common. As mentioned

above, the interfaces use Open Sound Control to

transmit accelerometer data to the computer. One

of the primary objectives of this system is to

simplify the process of composing and performing

with the interface by automatically establishing

OSC connections. For example, at a minimum,

wireless OSC messages require access to a network

(SSID and Password), a destination IP address and

port number. These four settings can pose

challenges for the user, especially when they need

to be updated due to location/WAN changes. In the case of Arduino-based firmware programming, this

requires accessing the interfaces from the IDE, editing code and then uploading the updated firmware

containing the above-mentioned values.

 This system eliminates those technical obstacles by using an ESP8266-based wireless access point

along with the ESP8266-based wireless accelerometer interfaces. The interfaces and computer all

connect to the same access point to exchange the OSC messages. The composer/sound-designer can

focus on attaching Max abstractions (such as the one created for this system) to sound synthesis

Figure 2: TouchOSC settings page. Note the necessity to
enter IP and Port values for each network.

	 4	

parameters they wish to control while the performer can focus⇔ on the resulting sounds without having

to change settings for multiple interfaces.

Interface
ESP8266 and
LIS3DH

OSC
⇔

Access Point
ESP8266

OSC
⇔

Computer
Running audio
synthesis software

Hardware Components

The following hardware components are used in this interface system:

• ESP8266 Adafruit Huzzah Feather Board
• LIS3DH 3-axis Accelerometer on Adafruit breakout board
• 3.7V 500 mAh Lithium Battery
• Two SPST momentary and one SPST toggle switch(es)
• 3D-printed Enclosure

 The ESP8266 is a low-cost microcontroller with built-in Wi-Fi capability made by Espressif

Systems and programmable in the Arduino IDE.

Adafruit’s Feather Huzzah with ESP8266 includes several

add-ons such as battery and micro-USB ports, voltage

Figure 5: Huzzah 8266 top view. Source:
Adafruit.com

Figure 4:Huzzah 8266 back view. Source: Adafruit.com

Figure 3: Wiring diagram for LIS3DH, 8266 and battery.

	 5	

regulator and three on-board LEDs. A “pinout” is displayed below showing the available GPIO

including the I2C bus connections on pins four and five which are connected to the LIS3DH

accelerometer.

	
Figure 6: Pinout from Adafruit showing I2C bus on pins four and five (lower right), LEDs and digital IO used for this system.

 The LIS3DH is a low-cost three-axis accelerometer which supports the I2C bus

protocol. Adafruit provides the breakout board version used

for the project. Both the LIS3DH as well as the 8266 boards

run on 3.3 VDC which can be supplied by a battery such as the

lithium battery shown above in Figure 3. Note in the figure

that power comes to the board via “Vin” (volage in) and

“GND” (ground). Accelerometer information is sent via I2C

bus on the SCL (clock) and SDA (data) pins.

Figure 7: LIS3DH breakout board from

Adafruit Industries.

	 6	

Wiring the Components

 The LIS3DH is wired to the Huzzah ESP8266 by soldering four wires: power, ground, I2C

Clock and Data. As shown in Figure 3 above, the main components require little soldering and the

additional soldering comes in with added buttons and a power switch.

 Two tactile SPST buttons are connected to pins 2 and 12 respectively. Pin 2 is a reset which can

be used to re-establish the network connection if needed and also “wake up” from the battery-saving

“Deep Sleep” mode. Pin 12 is a digital general-purpose IO

and corresponds to the “Aux Button” in the Max ec05

abstraction. Other digital IO pins are available but only one

analog pin. The LIS3DH has three analog pins

available. Due to battery life and size considerations, no

additional digital or analog pins are used at this time but

could be incorporated for future use.

 Adafruit’s Feather boards include a battery input

jack but in order to be able to power down the interface, a SPST switch is placed inline with the ground

wire.

Enclosure

 An enclosure designed in

TinkerCad holds the components and an

elastic strap. This environment is an

entry-level 3D modeling environment

which would make custom user interfaces

or new experimental designs accessible for

a performing artist or composer. The

current size and dimensions are based on the components. Future components could consolidate parts

and allow for small dimensions.

At present smaller enclosures are possible using ESP8266

variants but these come with tradeoffs to be added back

into the enclosure such as power regulators and a

programming connection.	

Figure 9: Sample view from TinkerCad showing 3D design for enclosures.

Figure 10: Partially assembled interface showing
scale.

Figure 8: Example of interface without enclosure.

	 7	

Figure 11:Assembled interface showing scale. The 8266Wi-
Fi card is positioned underneath the LIS3dH and battery.

	 8	

Accelerometers as Controllers

 An accelerometer-based system is not dependent on the location of the interface but rather on the

rate of location change. In contrast, many electronic music controllers are based on changes in

location. Examples include sliders and knobs (excluding rotary step encoders) as well as video-tracking

systems in which the user navigates a sound space.

 Though there are many variations on these location-based navigation systems, at a fundamental

level, they share a common design which is giving the user the ability to change parameters along a

continuum of possible values or morph between preset values. The accelerometer-based system can be

ideal for dance since the dancer can create similar results from different body positions.

 In Figure 11, a dancer is wearing

two interfaces from an early

prototype. The OSC messages are

controlling the lights through DMX, as

well as creating and spatializing the sound

through four loudspeakers.

 While the accelerometer’s primary

data is the rate of change along an axis,

there is also a positional data based on

orientation such as when the hand is

rotated. Each stationary hand position is a unique combination of XYZ values and while these values are

small relative to fast movements, they do provide an opportunity for using the interfaces as a more

conventional continuous controller.

 One significant advantage of using accelerometers is the ability to create “percussion” gestures

from short, quick movements. Another consideration is coupling of the XYZ axis making it difficult or

impossible to change values on one axis without affecting the values of another. This can be viewed in

the same light as many traditional acoustic instruments where parameters such as timbre are coupled with

amplitude and frequency.

Figure 12: Dancer with prototype interfaces.

	 9	

Mapping the Accelerometer Data to Sound Synthesis Parameters

 In Max the composer creates an instance of the ec05 object with arguments specificying interface

location and the desired axis. The output of that object is attached to the input of any other Max object

meaning the interfaces can control other events such as lighting, sound spatialization, etc. One goal of

this project was to explore mappings to synthesis parameters other than “one-to-one” pitch

mapping. The synthesis technique developed for the prototype is one based on taking a ramp waveform

and dividing it into a number of steps. The technique is very similar to “down sampling” but the

approach is different and affords different resulting timbres. Amplitude variation is created by mapping

an accelerometer axis to the cutoff frequency of a low pass-resonance filter. Finally, reverberation time

and wet/dry mix level are also mapped to the interfaces.

Left Hand Destination Right Hand Destination

X Base Frequency X Number of steps

Y Reverb Time Y Reverb wet/dry mix level

Z Rate of random high resonance LPF cutoff
frequency

Z Filter wet/dry mix level

Table 1. Sample mapping of accelerometer data to synthesis parameters

	 10	

Software

Arduino Code

The Arduino IDE (Integrated Development Environment) coding for this system makes use of libraries for the

ESP8266, LIS3dH boards as well as the OSC and I2C protocols. The straightforward code for this dance

interface simply reads the accelerometer information and sends it wirelessly to the computer listening for the

OSC messages. Much of the code deals with networking issues. The complete code is given in the Appendix of

this document.

The wireless communication requires the SSID and

Password. In addition, the OSC messaging requires

the IP address and port number of the destination

computer. Due to its low cost (each interface

approximately USD $30), it is possible to have several

interfaces on multiple performers. However,

configuring the above-mentioned information on

each interface would be cumbersome and is made

more difficult for many users considering the

Arduino-based boards are only programmable

through the Arduino IDE and therefore inaccessible

to many end users. Thus, a critical feature aimed at

making this interface system easy to use is allow for

dynamic or at least simply assignment of all of the

necessary information. The port assignment is

essentially the location of the accelerometer on the user (e.g. right hand on port 9000, left hand on port 9001,

etc.). A hardware switch is possible on the interface to set the port/location however, setting the network SSID,

password and the destination computer’s IP address would still require plugging in the devices and programming

from the Arduino IDE.

 The ESP8266 firmware handles logging in to the access point as well as receiving the

accelerometer data from the LIS3DH and sending it wirelessly as OSC messages. Other messages

include accelerometer tap, double-tap, button presses as well as the interface’s dynamically-assigned IP

Figure 13: Arduino IDE sample.

	 11	

address so that messages can be sent from the computer to the interface to toggle the two on-board

LED’s (red and blue).

Max-MSP Interface Code

In order to make a flexible interface, the author coded a patch for mapping and scaling incoming accelerometer

data. The user can call on these abstractions and quickly route data to the synthesis parameter of choice. The

interface assumes there will be at most five interfaces each with XYZ axis data.

	

Figure 14: The sound environments portal showing "Remainder Waves" as one of several Sound engines.

	
 For example, the software synthesis engine for the initial version of the interface uses a technique similar

to bit-crushing resulting in a “noise music” that transitions from pitched to non-pitched sound allowing for the

creation of percussive as well as ambient textures. This flexibility proved very beneficial since it allowed a single

engine to be used for the entire performance without the need to switch to a different synthesis engine.

	 12	

Figure 15: The EC05 abstraction showing connectivity and controls.

Max-MSP Sound Synthesis Code

The synthesis technique utilized in the initial version of the interface contributed to the initial reception and

“proof of concept” of the interface due, in part, to the variety of timbres possible. Particularly noteworthy, is the

lack of mapping pitch to any of the accelerometer axis. The software engine can be divided into three sections:

• Sound generation
• Filtering
• Reverb

	 13	

Figure 16: A detailed view of the Remainder Waves synth. For an example of mapping, the red "LHz" is the left-hand z-axis.

As noted earlier, each of these sections is controlled by two accelerometer axis each. The sound generation uses a

technique similar to bit-crushing but not actually changing the bit depth: a ramp wave is converted into a stair-

step wave by using what amounts to a sample-and-hold function. The results of the resampled ramp wave are

then passed through a low pass filter with a random cutoff whose rate is determined by the number of steps

thereby coupling those two parameters. The final section is the reverb who range of values go from heavy to light

reverberation.

	 14	

Additional Max Abstractions and Patches

 The abstraction at the heart of the system is ec05 shown connected in Figure 15. It receives the

XYZ accelerometer data, IP address and button events from each interface. It can also send messages

such as toggling two of the onboard LEDs.

	
Figure 17: Another "sound environment" this time using additive synthesis as the sound engine.

 Abstraction arguments are the interface location (e.g., Left Hand = LH) and the desired re-

scaled output range. To get the data from the left hand X axis, one would enter “LHx” as an

argument. The next two arguments are the minimum and maximum output range which are rescaled

from the accelerometer’s raw output range of -16384 to +16383. Without these arguments the default

range is rescaled 0-127.

	 15	

Much of the programming

involves making the ec05

abstraction generic so the user

need only specify the interface

location on the body. A table

(Max coll object) correlates the

location with the OSC port

number. This “hard wiring”

allows the interface to broadcast

its IP address to confirm

connection and allow the

computer to send messages back

to the interface. For the

composer, the ec05 abstraction

allows for quickly attaching an interface’s XYZ accelerometer and Aux button output as a control input in

a Max patch.

Figure 14 is a high-level patch that functions as a

portal for multiple sound engines which are loaded

into the Max bpatcher object. Users can quickly

switch between environments/sound engines. This

patch can also handle global events such as a button

to send the “Deep Sleep” command to all of the

ESP8266 interfaces simultaneously putting them into

very low power mode. Lastly, the ec05 abstraction

also allows for an “insert effect” break in the

accelerometer data signal flow.

The ecMixer abstraction is similar to a

plugin/insert effect module of a DAW. The raw data

from the accelerometers can be processed with a

shaping function, echo effects with the possibility of time dilation, a looper and others in future

Figure 19: EC05 abstraction demonstrating the possible
input and outputs for the Right hand X-axis (RHx).

Figure 18: A "Theremin" sound environment tracking x-axis pitch and z-axis
amplitude.

	 16	

development. The insert strips for each interface axis and the inserts themselves are created dynamically

with Javascript.

	
Figure 20: The mixer showing a complete matrix of five interfaces with possible insert effects.

	 17	

	
Figure 21: An example of a insert effect with dynamic object creation.

	
Figure 22: Dynamic menu loading with all of the possible sound environments stored in the application folder.

	 18	

Future Work

 Future work will focus on continuing to reduce the size of the interface by using smaller/simpler

versions of the ESP8266, using flexible 3D printing filaments that will conform to the hand and foot,

increasing battery life and lastly, using the Raspberry Pi to serve as the access point as well as a Pure Data

synthesis environment.

	 19	

Appendix

	 20	

Appendix A: Arduino Interface Code:

#if defined(ESP8266)
#include <ESP8266WiFi.h>
#else
#include <WiFi.h>
#endif
#include <WiFiUdp.h>
#include <OSCMessage.h>

#include <Wire.h>j
#include <SPI.h>
#include <Adafruit_LIS3DH.h>
#include <Adafruit_Sensor.h>

#define CLICKTHRESHHOLD 90

#if defined(ARDUINO_ARCH_SAMD)
 #define Serial SerialUSB
#endif

IPAddress gateway;

//char ssid[] = "XXXXXX"; // your network SSID (name)
//char pass[] = "XXXXXXX"; // your network password

//Code added from OSC Receive Example

OSCErrorCode error;
unsigned int redLedState = HIGH; // LOW means led is *on*
unsigned int blueLedState = HIGH; // LOW means led is *on*

/* MorganNotes: Buttons and the Adafruit Huzzah Feather ESP8266 Built-in LEDs
Orange LED is for battery charging and is not accessible via pins
Red LED is GPIO 0
Blue LED is GPIO 2
Reset Button is GPIO 0
Audio Toggle is GPIO 12
*/

const int RED_LED = 0;
const int BLUE_LED = 2;
const int AuxToggleButton = 12;
int old_AuxToggleButton_state = 1;
int new_AuxToggleButton_state = 0;
int sleepState = 0;

//Code added from OSC Receive Example

WiFiUDP Udp; // A UDP instance to let us send and receive packets
over UDP
//******************************The following IP comes from the computer via
DHCP ***
//******************************Attempting to use a Manually entered fixed IP
of 192.168.2.2 ********************************

	 21	

const IPAddress outIp(192,168,4,4); // remote IP of your computer:
This is subject to change based on Router DHCP: See above.
//OSC/UDP Port Mapping
//LH, 1111;
//RH, 2000;
//LF, 3000;
//RF, 4000;
//Torso, 5000;
const unsigned int outPort = 2000; // remote port to receive OSC;
see above legend
const unsigned int localPort = outPort+1; // local port to listen for
OSC packets (actually not used when only sending)
Adafruit_LIS3DH lis = Adafruit_LIS3DH();

void setup() {

//Setting up initial LED states and Button/Pin modes
 pinMode(RED_LED, OUTPUT);
 pinMode(BLUE_LED, OUTPUT);
 digitalWrite(RED_LED, redLedState); // set initial Red LED state
 digitalWrite(BLUE_LED, blueLedState); // set initial Blue LED state
 pinMode(AuxToggleButton, INPUT_PULLUP);

#ifndef ESP8266
 while (!Serial); // will pause Zero, Leonardo, etc until serial console
opens
#endif
//******************************Begin LIS3DH Startup and
Setup********************************
 Serial.begin(9600);
 Serial.println("LIS3DH test!");
 if (! lis.begin(0x18)) { // change this to 0x19 for alternative i2c
address
 Serial.println("Couldnt start");
 while (1);
 }
 Serial.println("LIS3DH found!");
 lis.setRange(LIS3DH_RANGE_2_G); // 2, 4, 8 or 16 G!
 Serial.print("Range = "); Serial.print(2 << lis.getRange());
 Serial.println("G");
//******************************End LIS3DH Startup and
Setup********************************

// ******************************** Connect to WiFi network

 Serial.println();
 Serial.println();
 Serial.print("Connecting to ");
 Serial.println(ssid);
 WiFi.begin(ssid, pass);
 while (WiFi.status() != WL_CONNECTED) {
 delay(100);
 Serial.print(".");
 }
 Serial.println("");

	 22	

 Serial.println("WiFi connected");
 Serial.println("IP address: ");
// ******************************** Max-OSC will ask for this local IP
address ********************
 Serial.println(WiFi.localIP());
// ********************************
 Serial.println("Starting UDP");
// ******************************** Max-OSC will ask for this local port to
determine location ********************
 Udp.begin(localPort);
 Serial.print("Local port: ");
#ifdef ESP32
 Serial.println(localPort);
#else
 Serial.println(Udp.localPort());
#endif
// ******************************** click set up *********************
lis.setClick(2, CLICKTHRESHHOLD);

//String tester = "hello";
//char charTester = '5';
//int charTester2 = int(charTester);
//
//OSCMessage msgOUT("/sensorIP");
// msgOUT.add(charTester2);
// Udp.beginPacket(outIp, outPort);
// msgOUT.send(Udp);
// Udp.endPacket();
// msgOUT.empty();

 gateway = WiFi.gatewayIP();
 Serial.print("GATEWAY: ");
 Serial.println(gateway);

} // ** END SETUP
**
//

//******************************** Start Code added from OSC Receive Example
void red_led_reader(OSCMessage &msgIN) {
 redLedState = msgIN.getInt(0);
 digitalWrite(RED_LED, !redLedState);
// Serial.print("/redLed: ");
// Serial.println(redLedState);
}
void blue_led_reader(OSCMessage &msgIN) {
 blueLedState = msgIN.getInt(0);
 digitalWrite(BLUE_LED, !blueLedState);
// Serial.print("/blueLed: ");
// Serial.println(blueLedState);
} // ******************************** End Code added from OSC Receive Example

void put_to_sleep(OSCMessage &msgIN) {
 sleepState = msgIN.getInt(0);
 if (sleepState == 1) {

	 23	

 sleepState = 0;
 ESP.deepSleep(999);
 }
 }
// Serial.print("/blueLed: ");
// Serial.println(blueLedState);

//

// *** LOOP
**
//

void loop() {

 uint8_t click = lis.getClick();
// if (click == 0) return;
// if (! (click & 0x30)) return;
// Serial.print("Click detected (0x");
// Serial.print(click, HEX);
// Serial.print("): ");
 if (click & 0x10) {
 OSCMessage msgClickOUT("/click");
 msgClickOUT.add(click);
 Udp.beginPacket(outIp, outPort);
 msgClickOUT.send(Udp);
 Udp.endPacket();
 msgClickOUT.empty();
 Serial.print(" single click");
 }
 if (click & 0x20) {
 Serial.print(" double click");
 Serial.println();
 }

 OSCMessage msg2OUT("/sensorIP");
String tempStr = WiFi.localIP().toString();
int i;
for (i = 0; i < sizeof(tempStr); i++) {
 char oneChar = tempStr[i];
 int intChar = int(oneChar);
 msg2OUT.add(intChar);
 // Serial.println(tempStr[i]);
 }
 Udp.beginPacket(outIp, outPort);
 msg2OUT.send(Udp);
 Udp.endPacket();
 msg2OUT.empty();

 new_AuxToggleButton_state = digitalRead(AuxToggleButton);
 OSCMessage msgOUT3("/auxToggle"); //Changed msg to msgOUT to distinguish
in vs. out.
 msgOUT3.add(new_AuxToggleButton_state);
 Udp.beginPacket(outIp, outPort);
 msgOUT3.send(Udp);

	 24	

 Udp.endPacket();
 msgOUT3.empty();
// Serial.println("Auxillary Toggle Button State is ");
// Serial.print(new_AuxToggleButton_state);
// Serial.println();

 lis.read(); // get X Y and Z data at once
 // Then print out the raw data

// Serial.print("X: "); Serial.print(lis.x);
// Serial.print(" \tY: "); Serial.print(lis.y);
// Serial.print(" \tZ: "); Serial.print(lis.z);

// sensors_event_t event;
// lis.getEvent(&event);

 OSCMessage msgOUT("/xyz"); //Changed msg to msgOUT to distinguish in vs.
out.
 // msgOUT.add("hello, osc.");
 msgOUT.add(lis.x);
 msgOUT.add(lis.y);
 msgOUT.add(lis.z);
// msgOUT.add(XLoc);
 Udp.beginPacket(outIp, outPort);
 msgOUT.send(Udp);
 Udp.endPacket();
 msgOUT.empty();
 delay(50);

//******************************this is the code I am adding Feb. 19.
// the incoming message from Max over OSC/UDP will cause Deep Sleep

OSCMessage msgIN;
 int size = Udp.parsePacket();
//*********start for future use*********
// WiFiUDP.remoteIP();
//**********end for future use*********
 if (size > 0) {
 while (size--) {
 msgIN.fill(Udp.read());
 }
 if (!msgIN.hasError()) {
 msgIN.dispatch("/red_led", red_led_reader);
 msgIN.dispatch("/blue_led", blue_led_reader);
 msgIN.dispatch("/deep_sleep", put_to_sleep);
 } else {
 error = msgIN.getError();
 Serial.print("error: ");
 Serial.println(error);
 }
 }
}

	 25	

Appendix B: ESP8266 WI-FI Access Point Arduino Code

/* Create a WiFi access point and provide a web server on it. */

#include <ESP8266WiFi.h>
#include <WiFiClient.h>
#include <ESP8266WebServer.h>

/* Set these to your desired credentials. */
const char *ssid = "XXXXXX";
const char *password = "XXXXXXX";

ESP8266WebServer server(80);

/* Test message. Go to http://192.168.4.1 in a web browser
 * connected to this access point to see it.
 */
void handleRoot() {
 server.send(200, "text/html", "<h1>You are connected</h1>");
}

void setup() {
 delay(1000);
 Serial.begin(115200);
 Serial.println();
 Serial.print("Configuring access point...");
 /* You can remove the password parameter if you want the AP to be open. */
 WiFi.softAP(ssid, password);

 IPAddress myIP = WiFi.softAPIP();
 Serial.print("AP IP address: ");
 Serial.println(myIP);
 server.on("/", handleRoot);
 server.begin();
 Serial.println("HTTP server started");
}

void loop() {
 server.handleClient();
}

