Financial Mathematics

Please Note: \(i = \frac{r}{m} \) and \(n = mt \) with
\(t \) = time in years,
\(r \) = interest rate expressed as a decimal,
\(m \) = number of compoundings per year,
\(FV \) = Future Value,
\(PV \) = Present Value,
\(PMT \) = Payment, and
\(I \) = Interest

Simple Interest: \(I = PVrt \) with \(FV = PV + I \)

Periodic Compounding: \(FV = PV (1 + i)^n = PV (1 + \frac{r}{m})^{mt} \)

Continuous Compounding: \(FV = PV e^{rt} \)

Annual Percentage Yield: \(APY = (1 + \frac{r}{m})^m - 1 \)

APY for Continuous Compounding: \(APY = e^r - 1 \)

Future value of an Ordinary Anuity: \(FV = PMT \left[\frac{(1 + i)^n - 1}{i} \right] \)

Present value of an Ordinary Anuity: \(PV = PMT \left[\frac{1 - (1 + i)^{-n}}{i} \right] \)

Remaining Balance after \(x \) payments: \(B = PMT \left[\frac{1 - (1+i)^{-(n-x)}}{i} \right] \)