

AC Method

To factor $ax^2 + bx + c$ with $a \neq 1$, begin by multiplying a and c. Then, find two numbers such that the following is true:

_____ × ____ = ac AND _____ + ____ = b

Example

Factor: $6x^2 - x - 15$

In this case, a = 6, b = -1, and c = -15. Thus, ac = (6)(-15) = -90. So, find two number such that

_____ × ____ = -90 AND _____ + ____ = -1

Notice that, the two numbers we're looking for, have a negative product. Thus, one of the factors will be negative and one will be positive.

TIP: One fast way to find these numbers is to use a graphing calculator. Plug $y_1 = \frac{-90}{x}$ and $y_2 = \frac{-90}{x} + x$ into the *y*-editor of your graphing calculator. Then, access your table. (*Make sure that TBLSET has the independent variable set to auto and that the table is starting at 1.*) The first two columns give you the factors of 90, while the last column gives you their difference.

Since $-10 \times 9 = -90$ and -10 + 9 = -1, -10 and 9 are our numbers. To complete the factoring process, we rewrite the given polynomial with four terms instead of three. Thus the -x in the middle of the given polynomial becomes -10x + 9x or 9x + -10x. You may write these new terms in any order. Then, factor by grouping.

$$6x^{2} - x - 15 = 6x^{2} - 10x + 9x - 15 = (6x^{2} - 10x) + (9x - 15) = 2x(3x - 5) + 3(3x - 5) = (3x - 5)(2x + 3)$$

OR

 $6x^{2} - x - 15 = 6x^{2} + 9x - 10x - 15 = (6x^{2} + 9x) + (-10x - 15) = 3x(2x + 3) - 5(2x + 3) = (2x + 3)(3x - 5)$