Financial Mathematics

Please Note: $i = \frac{r}{m}$ and n = mt with

t =time in years, r =interest rate expressed as a decimal,

m = number of compoundings per year,

FV = future value, PV = present value, PMT = payment,

and I =interest

Simple Interest: I = PVrt with FV = PV + IPeriodic Compounding: $FV = PV (1+i)^n = PV (1+\frac{r}{m})^{mt}$ Continuous Compounding: $FV = PVe^{rt}$ Effective Rate (APY): $r_E = (1+\frac{r}{m})^m - 1$ Effective Rate (APY) for Continuous Compounding: $r_E = e^r - 1$ Future value of an Ordinary Anuity: $FV = PMT \left[\frac{(1+i)^n - 1}{i}\right]$

Present value of an Ordinary Anuity: $PV = PMT\left[\frac{1-(1+i)^{-n}}{i}\right]$

Remaining Balance after x payments: $B = PMT\left[\frac{1-(1+i)^{-(n-x)}}{i}\right]$

Payment amonut for n equal periodic payments: $PMT = PV\left[\frac{i}{1-(1+i)^{-n}}\right]$

Branden Barnhart 2022