General Steps for Using Gauss-Jordan Tips for using Gauss-Jordan: • To get 1's, use reciprocals **Completing Column 1** • To get 0's, use additive inverses • Use column 1 to get zeroes in row 1. • Use column 2 to get zeroes in row 2, $__$ · $R_1 \rightarrow R_1$ and so on. Three Possible Outcomes (Examples): $\underline{\qquad} \cdot R_1 + R_2 \rightarrow R_2$ 1 1) One Solution: 0 $\underline{\qquad} \cdot R_1 + R_3 \rightarrow R_3 \qquad 0$ 1 0 0 5 0 1 0 2 **Completing Column 2:** 0 0 1 4 x = 5, y = 2, and z = 4. The solution is (5, 2, 4). 2) Infinite Solutions (dependent system): 1 0 2 3 0 1 -3 4 0 0 0 0 The equations are: x + 2z = 3 and y - 3z = 4Solve for x and y: **Completing Column 3:** x = 3 - 2z and y = 4 + 3zThus, the solution is: (3 - 2z, 4 + 3z, z) with z = any real number 3) <u>No Solution (inconsistent system):</u> 1 0 0 5 $\underline{\qquad} \cdot R_3 + R_1 \rightarrow R_1$ 0 1 0 2 $\begin{array}{c|c} & & & \\ \hline & & \\ & & \\ & & \\ \hline & & \\ &$ 0 0 0 4 Here, this matrix tells us that 0 = 4 which we know is false. Thus, there is no solution. Brandon Barnhart 2020

Gauss-Jordan Elimination

Example:

Solve the system represented by the matrix:	3	4	2	1
	1	2	3	4
	2	3	1	4

The first step is to get a 1 in the first row of the first column.

Since there is a 1 in the second row, we'll do a row swap.

 $rowSwap([A], 1, 2) \rightarrow [A]$

 $R_1 \stackrel{SWAP}{\longleftrightarrow} R_2$ $\begin{vmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \\ 2 & 3 & 1 & 4 \end{vmatrix}$ $\begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & -2 & -7 & -11 \\ 2 & 3 & 1 & 4 \end{vmatrix}$

Now that we are done with the first column, we move to the second column. The next step is to get a 1 in

the second row of the second colu $* row(-1/2, [A], 2) \rightarrow [A]$

> $-\frac{1}{2}R_2 \xleftarrow{\text{YIELDS THE NEW}} R_2$ $\left|\begin{array}{ccccc}1&2&3&4\\0&1&7/2&11/2\\0&-1&-5&-4\end{array}\right|$

The second step is to get zeros in the remaining cells of the first column.

We will do this by using additive inverses.

 $*row + (-3, [A], 1, 2) \rightarrow [A]$

 $-3R_1 + R_2 \xrightarrow{\text{YIELDS THE NEW}} R_2$

* <i>row</i> +	(-2,	[A], 1 ,	(3) →	[A]
----------------	------	--------------------------	---------------	--------------

-21	$R_1 + 1$	R ₃ —	LDS TI	HE NEW	R ₃
	1	2	3	4	
	0	-2	-7	-11	
	0	-1	-5	-4	

We now get zeros in the remaining entries of column 2.

umn. I]	$row + ([A], 2, 3) \rightarrow [A]$					$* row + (-2, [A], 2, 1) \rightarrow [A]$				
R ₂	$R_2 + R_3 \xrightarrow{\text{YIELDS THE NEW}} R_3$			_	$-2R_2 + R_1 \xrightarrow{\text{YIELDS THE NEW}} R_1$					
	1	2	3	4		1	0	-4	-7	
	0	1	3 7/2 -3/2	11/2		0	1	7/2	11/2	
	0	0	-3/2	3/2		0	0	-3/2	3/2	

Now that we are done with the second column, we move to the third column. We begin by getting a 1 in the third row. $* row(-2/3, [A], 3) \rightarrow [A]$

 $-\frac{2}{3}R_3 \xleftarrow{\text{YIELDS THE NEW}} R_3$

Finally, we get zeros in the remaining entries of column 3.

$$* \operatorname{row} + (-7/2, [A], 3, 2) \to [A] \qquad * \operatorname{row} + (4, [A], 3, 1) \to [A]$$

$$-\frac{7}{2}R_3 + R_2 \xrightarrow{YIELDS \ THE \ NEW} R_2 \qquad 4R_3 + R_1 \xrightarrow{YIELDS \ THE \ NEW} R_1$$

-11

0 9